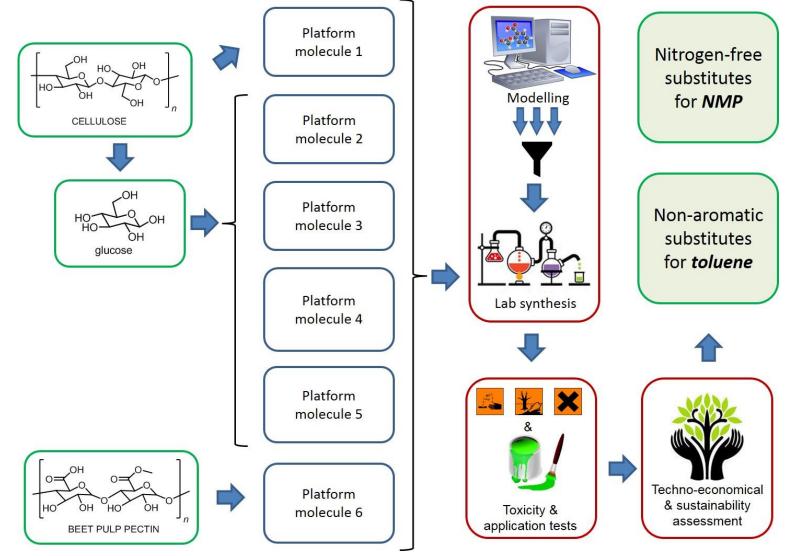


Solvent modelling and selection

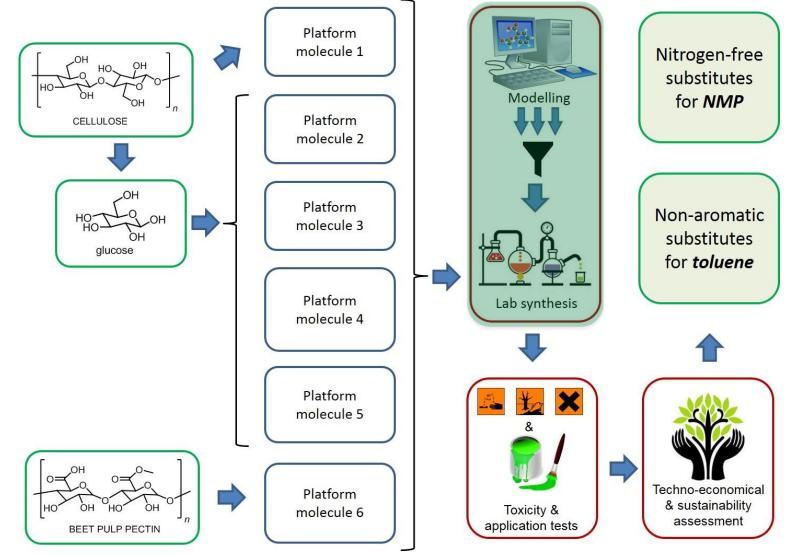
FERGAL BYRNE

University of York

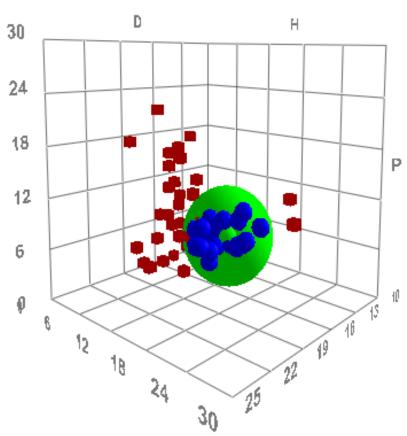


This project has received funding from the Bio Based Industries Joint Undertaking under the European Union's Horizon2020 research and innovation programme under agreement No 745450

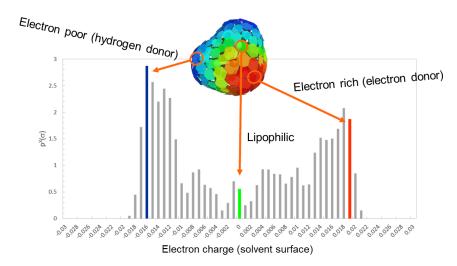
The concept

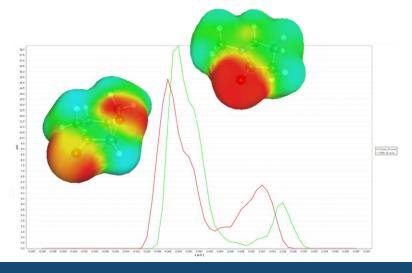


The concept



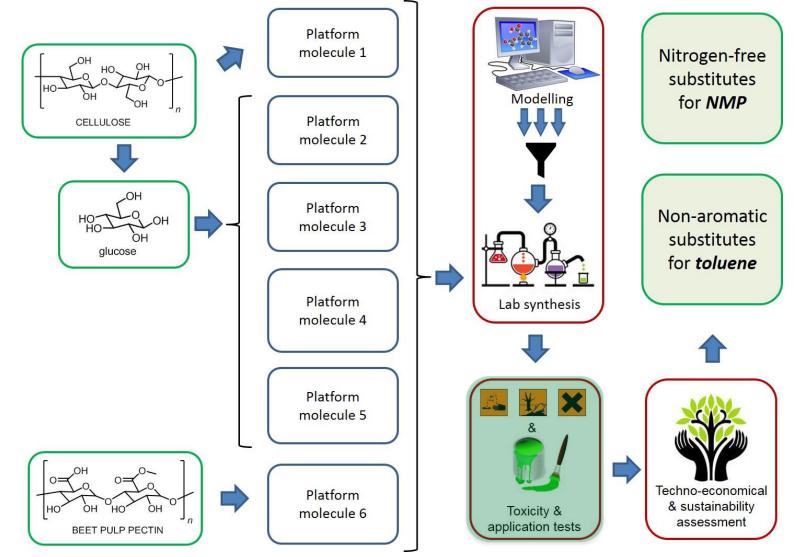
Designing New solvents




Solubility:

Courtesy of HSPiP and COSMOlogic

Electrostatic interactions:



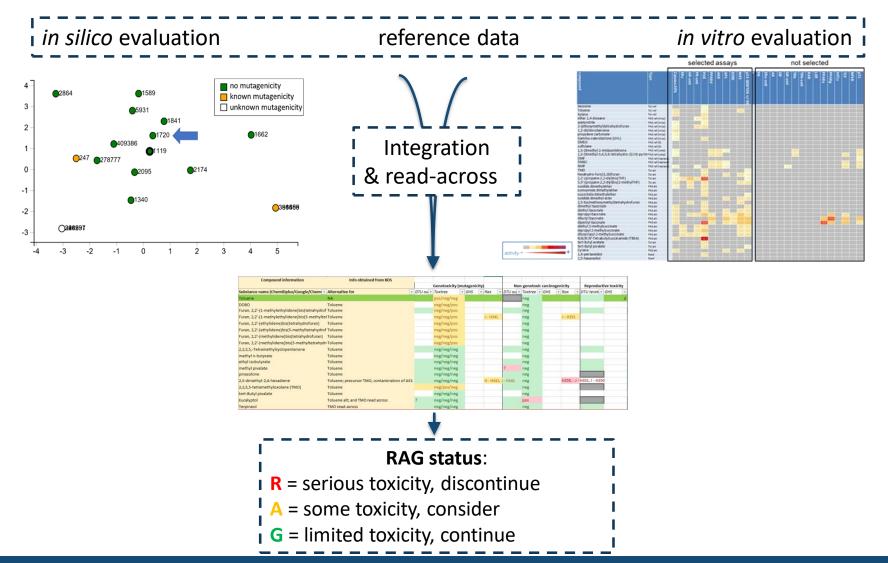
The concept

An integrated testing strategy to evaluate toxicological safety issues of candidate solvents

BARBARA VAN VUGT-LUSSENBURG

BioDetection Systems bv

This project has received funding from the Bio Based Industries Joint Undertaking under the European Union's Horizon2020 research and innovation programme under agreement No 745450


Advantages of early tox testing BDS

- It is vital for the project that final candidates have no/low toxicity
- 'Green' or 'BioBased' is no guarantee for low toxicity
- Early tox screening enables:
 - removal of toxic candidates from the workflow in an early stage
 - a feedback loop with structure-activity information to design / synthesis WP's
- Overall: an integrated process combining the evaluation of:
 - ease of synthesis
 - functional performance
 - safety

Innovative testing strategy

Overview in silico assessment

- Three parts:
 - collection and evaluation of existing experimental toxicity data
 - toxicity predictions using QSAR models
 - read across (RAX) predictions
- prioritised human health endpoints:
 - carcinogenicity (C)
 - mutagenicity (M)
 - reproductive toxicity (R)
 - skin sensitisation (S)
- Colour codes per endpoint:

Colour	Prediction
	Non toxic
	Low toxic
	Medium toxic
	Toxic
	Inconclusive

1. Existing experimental data

- Extract information from REACH registration dossiers
- Check for classification in the GHS system*

toxicity:	no	medium	high
based on experimental data	(EXP)	(EXP)	(EXP)
GHS classification exists		(GHS)	(GHS)

Applicable for 'existing' chemicals only

*GHS: Globally Harmonized System of Classification and Labelling of Chemicals

2. QSAR-based predictions

In silico-tools to predict toxicity of compounds Based on structure-activity relationships (SARs) or structural alerts

evaluated tools/models

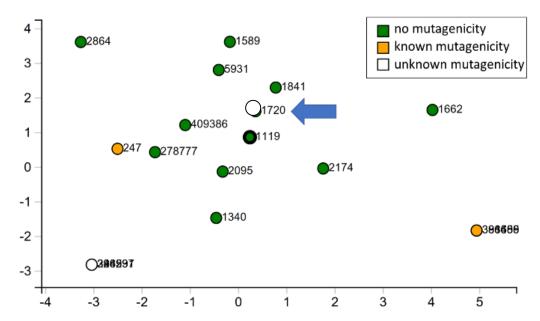
Toxicity Endpoint	Tool/Model	Test data	Sens.	Spec.
Ames test	DTU/Case Ultra	Internal	0.86	0.86
Ames test	ToxTree	Ames data ISS	0.88	0.71
Ames test	VEGA/cons.	Ames data ISS	0.96	0.93
Carcinogenicity	VEGA/Antares*	Carc data ISS	0.85	0.92
Carcinogenicity	VEGA/ISSCAN-CGX*	Carc data ISS	0.99	0.96
Carcinogenicity	VEGA/CAESAR*	Carc data ISS	0.81	0.89
Carcinogenicity	VEGA/ISS*	Carc data ISS	1.00	1.00
Carcinogenicity	VEGA/TNOcons.*	Carc data ISS	1.00	0.99
Carcinogenicity	VEGA/TNOcons.	Carc data ISS	0.67	0.65
Carcinogenicity	DTU/CaseUltra-rodent	Internal	0.51	0.88
Carcinogenicity	DTU/Leadscope-rodent	Internal	0.70	0.76
TK in vitro	DTU/CaseUltra	Internal	0.69	0.92
TK in vitro	DTU/Leadscope	Internal	0.85	0.84
TK in vitro	DTU/SciQSAR	Internal	0.79	0.81
HGPRT in vitro	DTU/CaseUltra	Internal	0.75	0.85
HGPRT in vitro	DTU/Leadscope	Internal	0.82	0.78
HGPRT in vitro	DTU/SciQSAR	Internal	0.80	0.73
MN in vivo	ToxTree*	In vivo MN ISS	0.70	0.30
MN in vivo	DTU/CaseUltra	Internal	0.50	0.84
MN in vivo	DTU/Leadscope-rodent	Internal	0.64	0.78
MN in vivo	DTU/SciQSAR	Internal	0.60	0.90
CA in vitro / CHO	DTU/CaseUltra	Internal	0.40	0.95
CA in vitro / CHO	DTU/Leadscope	Internal	0.54	0.79
CA in vitro / CHO	DTU/SciQSAR	Internal	0.51	0.84
CA in vitro / CHL	DTU/CaseUltra	Internal	0.60	0.88
CA in vitro / CHL	DTU/Leadscope	Internal	0.75	0.75
CA in vitro / CHL	DTU/SciQSAR	Internal	0.73	0.73
DART	VEGA/Caesar	Wu, 2013	0.81	0.32
DART	VEGA/P&G	Wu, 2013	0.85	0.44
Teratogenicity	DTU/CaseUltra hum terato	Internal	0.65	0.85
Teratogenicity	DTU/Leadscope hum terato	Internal	0.72	0.86
Teratogenicity	DTU/SciQSAR hum terato	Internal	0.65	0.93
Skin sensitisation	ToxTree/Reaction Domain	Kleinstreuer,2018	0.76	0.70
Skin sensitisation	ToxTree/Protein Binding	Kleinstreuer,2018	0.90	0.24
Skin sensitisation	VEGA/CAESAR*	Kleinstreuer,2018	0.91	0.73
Skin sensitisation	DTU/CaseUltra	Internal	0.70	0.97
Skin sensitisation	DTU/Leadscope	Internal	0.75	0.96
Skin sensitisation	DTU/SciQSAR	Internal	0.62	0.97

selected tools/models

Health endpoint	Tool	Model
Carcinogenicity	DTU	<u>Leadscope</u> rodent
	VEGA	Carcinogenicity model (ISS) (version 1.0.2) Carcinogenicity model (IRFMN/ISSCAN-CGX) (version 1.0.0) Carcinogenicity model (IRFMN/Antares) (version 1.0.0)
		Carcinogenicity model (CAESAR) (version 2.1.9)
Mutagenicity	DTU	Point mutations Mutations in thymidine kinase (TK) locus in mouse lymphoma cells Mutations in HGPRT locus in Chinese hamster ovary (CHO) cells Chromosome aberrations Chromosome Aberrations in Chinese Hamster Ovary (CHO) Cells Chromosome Aberrations in Chinese Hamster Lung (CHL) Cells
	VEGA	Point mutations Mutagenicity (Ames test) CONSENSUS model (version 1.0.2). Mutagenicity (Ames test) Consensus model, based on the predictions of the available VEGA mutagenicity models (Caesar, SarPy, ISS and KNN).
Reproductive toxicity	DTU	Teratogenic potential. Battery outcome i.e. combined CASE Ultra, <u>Leadscope</u> and <u>SciQSAR</u>
	VEGA	Developmental/Reproductive Toxicity library (PG) 1.0.0 Developmental Toxicity model (CAESAR) - v. 2.1.7
Skin sensitisation	DTU	Allergic contact dermatitis in <u>quinee</u> pig and human. Battery outcome i.e. combined CASE Ultra, <u>Leadscope</u> and <u>SciQSAR</u> .
	VEGA	Skin Sensitization model (CAESAR) 2.1.6
	Toxtree	Skin sensitization reactive domains

QSAR output

Colour	Prediction
	Non toxic
	Low toxic
	Medium toxic
	Toxic
	Inconclusive



3. Read-across (RAX)

DIAMONDS toolbox (TNO)

- 1. Identify structural similars of the candidate compound
- 2. Retrieve toxicity data of similars from various databases
- 3. Predict toxicity of candidate compound based on similars

ToxSpace shows toxicological properties of chemically most similar substances of target substance ID1720

Outcome in silico data

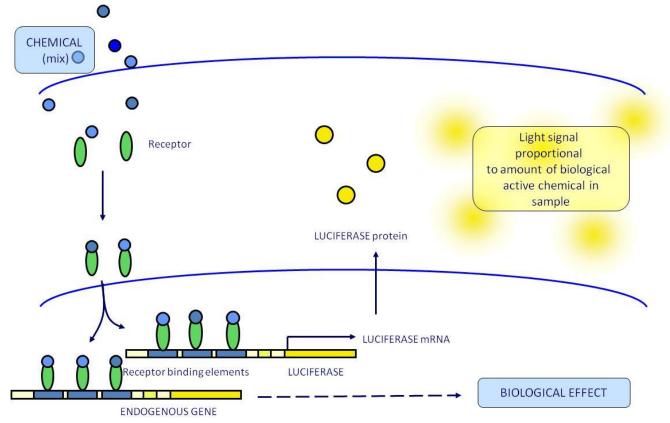
Integrate data (REACH, QSAR, RAX)

- * If available, in vivo data (EXP) 'overrules' all other data
- * Output: colour-coded 'barcode' with predictions on four endpoints
- * Information on source data included (EXP, GHS, RAX)

	Endpoint								
	С	C M R S							
comp. A			(EXP)						
comp. B									
comp. C									
comp. D	(GHS)		(RAX)						

EXP: experimental data was used

GHS: classification in GHS system used

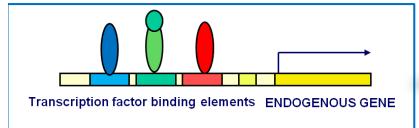

RAX: read-across was used

Colour	Prediction
	Non toxic
	Low toxic
	Medium toxic
	Toxic
	Inconclusive

Overview in vitro assessment

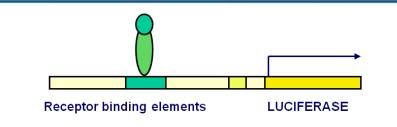
BDS

- A panel of human cell based CALUX reporter gene assays
- Rapidly and selectively measures activation of one specific nuclear receptor or cell signaling pathway
- CALUX-profile gives clues on possible mode-of-action, can be linked to adverse outcome



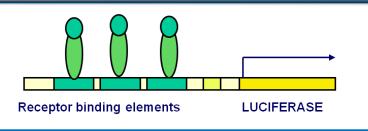
Advantages of the CALUX approach

Biological situation: endogenous gene under control of **multiple** RE's



unselective

Reporter gene assay: reportergene under control of **one type** of RE



selective

CALUX assay: reportergene under control of multiple copies of one type of RE

selective and responsive

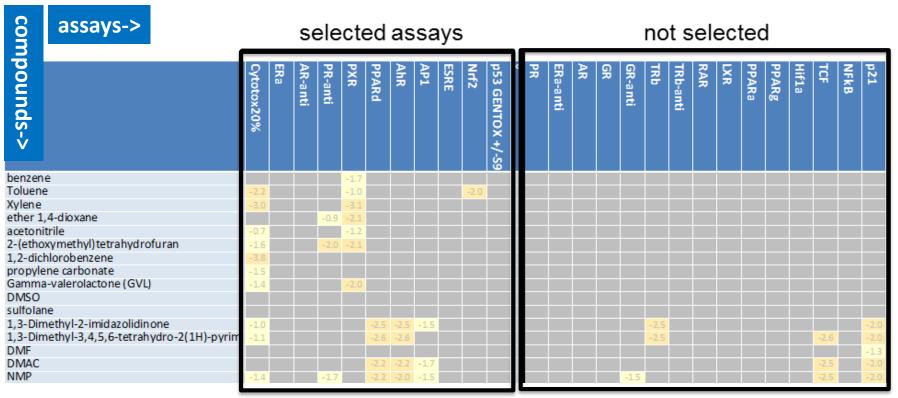
Available CALUX assays

Cell line	Endpoint
ERa CALUX (ago/anta)	Estrogen receptor (ant)agonists
AR CALUX (ago/anta)	Androgen receptor (ant)agonists
PR CALUX (ago/anta)	Progesterone receptor (ant)agonists
GR CALUX (ago/anta)	Glucocorticoid receptor (ant)agonists
TRb CALUX (ago/anta)	Thyroid receptor (ant)agonists
RAR CALUX	Retinoic acid receptor agonists
LXR CALUX	Liver X receptor agonists
PXR CALUX	Pregnane X receptor agonists
PPARa CALUX	Peroxisome proliferator activated receptor agonists
PPARg2 CALUX	Peroxisome proliferator activated receptor agonists
PPARd CALUX	Peroxisome proliferator activated receptor agonists
AhR CALUX	Aryl Hydrocarbon receptor agonists
Hif1a CALUX	Chemical hypoxia response
TCF CALUX	wnt/TCF pathway activation
AP-1 CALUX	AP1 pathway activation / cell cycle control
ESRE CALUX	Endoplasmic reticulum stress
NFkB CALUX	Activation of NF-kB pathway (immune response)
Nrf2 CALUX	Oxidative stress
p21 CALUX	Transcription of p21 inhibitor of cell cycle progression
p53 CALUX	p53-dependent pathway activation / genotoxicity
Cytotox CALUX	Cytoxicity

Resolve SAFE AND EFFECTIVE BIOLAGED SOLVENTS

In vitro workflow

- 1. Determine appropriate exposure scenario
 - * assess solubility, volatility, water-miscibility
- 2. Determine appropriate assays
 - * screen representative reference compounds on broad panel
 - * select sub-panel of assays representing the most relevant endpoints
- 3. Evaluate data
 - * assign RAG status based on CALUX profile
- 4. Integrate with in silico outcome
 - * assign overall RAG status based on integrated in silico in vivo assessment



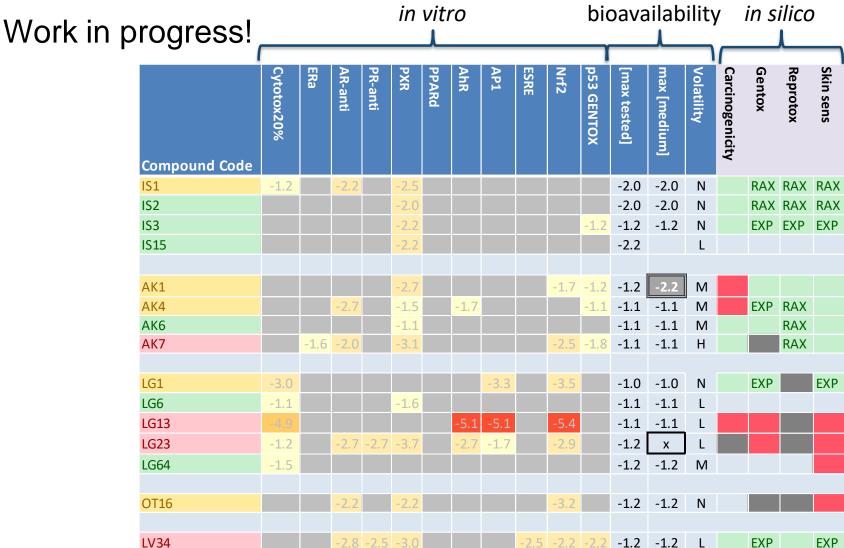
In vitro outcome: the CALUX profile

Lowest effect concentrations in Log(M)

Data evaluation: RAG status

Rules have been established for CALUX RAG status

Number of hits	LEC (LogM)	RAG status
0-2	>-5	green
0-2	<-5	amber
3-5	>-5	amber
3-5	<-5	red
>5	any	red


RAG status:	
R = serious toxicity, discontinue	- 1
A = some toxicity, consider	- 1
G = limited toxicity, continue	-

Compound ID	Cytotox20%	ERa	AR-anti	PR-anti	PXR	PPARd	AhR	AP1	ESRE	Nrf2	p53 GENTOX
ID 1055											
ID 1116	-3.1				-5.0						
ID 1046					-2.6		-2.6			-1.1	-1.6
ID 1099	-4.9						-5.1	-5.1		-5.4	
ID 1100	-1.2		-2.7	-2.7	-3.7		-2.7	-1.7		-2.9	

In silico & in vivo integration

Conclusions

- An integrated strategy has been developed which combines:
 - available in vivo data (existing chemicals only)
 - in silico predictions based on QSARs and read-across
 - in vitro data assessing interaction with ~20 different nuclear receptors and cell signaling pathways
- Safety assessment early in the design process enables:
 - early go-no go decisions
 - feedback to design-team on chemical groups with unfavourable tox properties

Acknowledgements

In silico assessment:

TNO

Dinant Kroese
Harrie Buist
Marie Meima
Sabina Bijlsma

In vitro screening:

BioDetection Systems by

Bart van der Burg Hai-Yen Man Faried Niamut

Thank you for your attention!