

Safe and high-performing bio-based alternatives to NMP

FABIEN DESWARTE, CIRCA ÁNGEL PUENTE, NOVA-INSTITUTE

This project has received funding from the Bio Based Industries Joint Undertaking under the European Union's Horizon2020 research and innovation programme under agreement No 745450

What is (Circa Group?

Developers of world's first continuous process to manufacture platform molecule Levoglucosenone from waste cellulose

Our Furacell[™] technology

- Proven over 10 years and 4 pilot plants
- Demonstration plant successfully commissioned and operating end-toend

- Ubiquitous solvent used in wide range of applications
- Global market value:
 - \$1.18bn in 2017
 - \$1.54bn in 2022 (CAGR of 5.40%)
- Under intense regulatory pressure due to its toxicity

Substance identity

EC / List no.: 212-828-1

Hazard classification & labelling

Danger! According to the **harmonised classification and labelling** (ATP09) approved by the European Union, this substance may damage the unborn child, causes serious eye irritation, causes skin irritation and may cause respiratory irritation.

Additionally, the classification provided by companies to ECHA in **REACH registrations** identifies that this substance may damage fertility or the unborn child.

Resolve Solvent Stage Gate approach

Potential NMP alternatives

Toxicity screening

Top NMP alternatives

Platform	Top candidates
Levoglucosenone	$LG1 \qquad H = LG2 \qquad LG6 \qquad LG64$
Isosorbide	IS1 IS2
Levulinic acid / HMF	OT16 LV34
Itaconic acid	None – all derivatives were suspected to be toxic
Pyrone	None – unselective synthesis
Alkenes	N/A

Economic and environmental performance

Economic and environmental performance

SUITED: SUstainability Integrated Technology Development

- Continuous optimization process
- Sustainability integrated technology development
- SUITED as a tool for technology improvement

Conceptual Process Designs

- Processes were designed for most promising candidates.
- Production of process flow diagrams with corresponding energy and stream tables and equipment design

Cost assessment

- Together with market analysis CAPEX and OPEX to give insight on production costs for selected candidates
- Most of the solvents we have looked at are well under 10 €/kg

nova

Bio-based content & BUE

NMP replacements	Bio-based content, %	BUE, %
LG1	98%	70%
LG6	85%	62%
LG64	65%	62%
IS1	84%	81%
OT16	79%	70%
LV34	56%	53%

Life Cycle Assessment

- Reference flow: 1 kg of solvent
- System boundaries: cradle-to-gate
 - infrastructure is excluded
 - apart from gaseous **emissions** to the air it is assumed that all emissions are controlled as **solid wastes** and effluents will go to **wastewater treatment**
 - use phase not part of this study (very variable)
 - end-of-life are not considered either
- Data source and quality: primary data from CPD, LCI databases, literature, estimations, data quality assessment was carried out
- Scope: hotspot analysis, scenario analysis, comparative analysis and benchmarking
- Multi-functionality: partition by allocation method, products and co-products are allocated based on the economic value. Preferred when there is a substantial difference in the price between products and co-products

Impact categories

Single point indicators covering depletion of **resources**, **ecotoxicity** and **human toxicity** aspects

No weighting was applied

- Global warming potential with a timeframe of 100 years (**GWP100a**) kg CO₂ eq.
- Abiotic depletion potential (ADP) (fossil fuels) MJ
- Abiotic depletion potential (ADP) (minerals) kg Sb eq.
- Stratospheric Ozone layer depletion (**ODP**) kg CFC-11 eq.
- Photochemical oxidation potential (**POCP**) kg C_2H_4 eq.
- Acidification potential (AP) kg SO_2 eq.
- Eutrophication potential (EP) kg PO_4^{3-} eq.
- Human toxicity potential (HTP), Freshwater aquatic ecotoxicity (FAETP), Marine aquatic ecotoxicology (MAETP) and Terrestrial ecotoxicity (TETP) 1,4-dichlorobenzene eq.

Describe the fate, exposure and effects of toxic substances in humans o ecosystems for an infinite time horizon

LG platform

System boundaries

NMP replacements

CIrca

Comparative analysis

GWP NMP replacements

CO₂ uptake

Resolve Dihydrolevoglucosenone (LG1)

10

6

8

6: High boiling polyols

×

12

14

Alkene platform

× Levoglucosenone

Isosorbide

Itaconate

* Levulinate

Pyrone
Other solvents

16

	Cyrene	NMP
δD (MPa) ^{1/2}	18.8	18.4
δP (MPa) ^{1/2}	10.6	12.3
δH (MPa) ^{1/2}	6.9	7.2
b.p. (°C)	227	202
η (mPa·s)	14.5	1.9

J. Sherwood et al., Chem. Commun., 2014, 50, 9650

8: Non-volatile dipolar aprotics

-4

-6

-8

2: Alcohols

5: Volatile dipolar aprotics

Test	Method	Result
Toxicity to	OECD 422	Negative
reproduction		
Mutagenicity	OECD 471/476/487	Not mutagenic
Acute toxicity	OECD 423	LD ₅₀ >2,000mg/kg*
(oral)		
Repeated dose	OECD 422	NOAEL =
toxicity		1,000mg/kg/day*
Skin sensitisation	OECD 429	not sensitising
Skin irritation	OECD 404/435	not irritating
Eye irritation	OECD 437/ Ocular	Mild eye irritant
	Irritection®	
Toxicity to fish	OECD 203	96h LC ₅₀ >100
		mg/l*
Toxicity to	OECD 202	48h EC ₅₀ >100
aquatic		mg/l*
invertebrates		
Toxicity to algae	OECD 201	72h EC ₅₀ >100
& cyanobacteria		mg/l*
Toxicity to	OECD 209	3h EC50 >1000
microorganisms		mg/l*
Biodegradability	OECD 301	Readily
		biodegradable

REACH registration to allow sales into EU:

- Annex VII (1-10T)
 - completed
- Annex VIII (10-100T)
 - completed
- Annex IX (100-1,000T)
 - Dossier submission in 2020

Registration in the US and other jurisdictions to follow

* maximum concentration tested

Cyrene - performance

Polyamide-imides production

- PAIs production largest user of NMP in European Union¹
- Wide range of application incl. corrosion resistant coatings
- Cyrene showed to provide a number of benefits vs NMP
- Additional advantage doesn't produced NOx during curing

¹ EU Restriction report for NMP

(19) World Intellectual Property Organization International Bureau (43) International Publication Date 30 March 2017 (30.03.2017) WIPO PCT			(10) International Publication Number WO 2017/050541 A1	
(51)	International Patent Clas	sification:		AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
	C08G 18/76 (2006.01)	C08G 18/34 (2006.01)		BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
	C08G 18/08 (2006.01)	C08G 73/10 (2006.01)		DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
	C09D 179/08 (2006.01)	C08G 73/14 (2006.01)		HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(21)	International Application	Number: PCT/EP2016/070751		KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC.
(22)	International Filing Date			SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
()	International Fining Date	2 September 2016 (02.09.2016)		TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(25)	Filing Language:	English	(84)	Designated States (unless otherwise indicated, for every
(26)	Publication Language:	English		GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
(30)	Priority Data: 15186805.6 25 Septembe	r 2015 (25.09.2015) EP		TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK EE ES ET ER GB GR HR HU IE IS IT LT LU
(71)	Applicant: HUNTSMAN	ADVANCED MATERIALS		LV. MC. MK. MT. NL. NO. PL. PT. RO. RS. SE. SI. SK.

Title: PREPARATION OF POLYAMIDOIMIDES

LICENSING (SWITZERLAND) GMBH [CH/CH]; Leg-

al Services Department, Klybeckstrasse 200, 4057 Basel

"It has surprisingly been found that the application of dioxabicycloalkane derivatives [and in particular pure Cyrene] instead of conventional polar aprotic solvents like NMP [...] not only facilitates rapid curing but also provides coatings having enhanced solvent resistance."

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GO

GW, KM, ML, MR, NE, SN, TD, TG).

Cyrene - performance

Graphene processing

- NMP widely used to disperse graphene for downstream use
- Wide range of application incl. composites, coatings, batteries, 3D printed materials,etc.
- Cyrene has been shown to have "near ideal physical properties" for the exfoliation of graphite and, crucially, the production of stable, high concentration graphene dispersions and inks

Salavagione *et al., Green Chem.*, 2017, 19, 2550 Pan *et al., Nature Communications*, 2018, 9, 5197

Merck

CIRCA GRANTS WILL & CO EXCLUSIVE BENELUX DISTRIBUTION RIGHTS FOR CYRENE®

November 13, 2017

MELBOURNE, AUSTRALIA and YORK, UK - 8 November 2017. Circa Group Pty Ltd. and Will & Co B.V. have entered into an exclusive distribution agreement in Benelux for commercial quantities of Circa's bio-based solvent and platform molecule Cyrene®.

"Our 50 tonnes per year prototype plant for producing Cyrene® is just coming online in Tasmania, and this distribution agreement with Will & Co is a major step forward to bringing our new product to Europe", explains Tony Duncan, CEO of Circa. "We are excited to be

circo

nova

Winner Bio-based Chemical Innovation of the year 2017

FC

Potential applications for other NMP alternatives is still being assessed

There is no such things as a drop-in replacement in the solvent sector!

- One of the key objectives of ReSolve was to develop at least one safe bio-based alternative to hazardous solvent NMP
- Using a combination of computational modelling, toxicity testing, LCA, TEA and performance evaluation, ReSolve was able to identify 8 safer NMP alternatives, starting from a "long list" of 232 candidates
- Circa is progressing with the commercialisation of 'lead target' Cyrene, with a first commercial plant expected to be operational in 2022
- The performance of other 'safe' bio-based alternatives developed by ReSolve are currently being evaluated
- The approach developed by ReSolve could be applied to other applications/sectors

Thank you.

circagroup.com.au